
86 COMMUNICATIONS OF THE ACM | JANUARY 2021 | VOL. 64 | NO. 1

review articles

DISTRIBUTED COMPUTING CONSIDERS the scenario where a
number of distinct, yet connected, computing devices (or
parties) wish to carry out a joint computation of some
function. For example, these devices may be servers that
hold a distributed database system, and the function to
be computed may be a database update of some kind.
The aim of secure multiparty computation is to enable
parties to carry out such distributed computing tasks in a
secure manner. Whereas distributed computing often
deals with questions of computing under the threat of
machine crashes and other inadvertent faults, secure
multiparty computation is concerned with the
possibility of deliberately malicious behavior by some
adversarial entity (these have also been considered in
the distributed literature where they are called Byzantine
faults). That is, it is assumed that a protocol execution
may come under “attack” by an external entity, or even
by a subset of the participating parties. The aim of
this attack may be to learn private information or
cause the result of the computation to be incorrect. Thus,
two important requirements on any secure computation

protocols are privacy and correctness.
The privacy requirement states that
nothing should be learned beyond what
is absolutely necessary; more exactly,
parties should learn their output and
nothing else. The correctness require-
ment states that each party should re-
ceive its correct output. Therefore, the

Secure
Multiparty
Computation

DOI:10.1145/3387108

MPC has moved from theoretical study
to real-world usage. How is it doing?

BY YEHUDA LINDELL

 key insights
	˽ Secure multiparty computation (MPC)

is an extremely powerful tool, enabling
parties to jointly compute on private inputs
without revealing anything but the result.

	˽ MPC has been studied for over three
decades in academia and has strong
theoretical foundations. In the past
decade, huge progress has been made
toward making MPC efficient enough for
use in practice.

	˽ In the past few years, MPC has started
to be used in commercial products.
There are performance costs associated
with MPC protocols, but there are many
real-life problems that can be solved
today using existing techniques.

http://dx.doi.org/10.1145/3387108

JANUARY 2021 | VOL. 64 | NO. 1 | COMMUNICATIONS OF THE ACM 87

I
M

A
G

E
 B

Y
 W

E
I

B
E

L
 C

H
R

I
S

T
O

P
H

E
/S

H
U

T
T

E
R

S
T

O
C

K
.C

O
M

adversary must not be able to cause the
result of the computation to deviate
from the function that the parties had
set out to compute.

Secure multiparty computation can be
used to solve a wide variety of problems,
enabling the utilisation of data without
compromising privacy. Consider, for
example, the problem of comparing a
person’s DNA against a database of
cancer patients’ DNA, with the goal of
finding if the person is in a high risk
group for a certain type of cancer. Such
a task clearly has important health and
societal benefits. However, DNA infor-
mation is highly sensitive, and should
not be revealed to private organiza-
tions. This dilemma can be solved by
running a secure multiparty computa-
tion that reveals only the category of
cancer that the person’s DNA is close to
(or none). In this example, the privacy
requirement ensures that only the cat-
egory of cancer is revealed, and nothing

else about anyone’s DNA (neither the
DNA of the person being compared nor
the DNA of the patients in the data-
base). Furthermore, the correctness
requirement guarantees that a malicious
party cannot change the result (for
example, make the person think that
they are at risk of a type of cancer, and
therefore need screening).

In another example, consider a trading
platform where parties provide offers
and bids, and are matched whenever an
offer is greater than a bid (with, for exam-
ple, the price of the trade being some
function of the offer and bid prices). In
such a scenario, it can be beneficial
from a game theoretic perspective to not
reveal the parties’ actual offers and bids
(because this information can be used by
others in order to artificially raise prices or
provide bids that are lower than their
utility). Privacy here guarantees that
only the match between buyer and
seller and the resulting price is revealed,

and correctness would guarantee that
the price revealed is the correct one
according to the function (and, for exam-
ple, not some lower value). It is interest-
ing to note that in some cases privacy is
more important (such as in the DNA
example), whereas in others correctness
is more important (such as in the trading
example). In any case, MPC guarantees
both of these properties, and more.

A note on terminology. In the lit-
erature, beyond secure multiparty
computation (with acronym MPC,
and sometimes SMPC), there are also
references to secure function evalu-
ation (SFE). These notions overlap
significantly and are often used syn-
onymously. In addition, special cases
of MPC often have their own names.
Two examples are private set intersec-
tion (PSI), which considers the secure
computation of the intersection of
private sets, and threshold cryptog-
raphy, which considers the secure

88 COMMUNICATIONS OF THE ACM | JANUARY 2021 | VOL. 64 | NO. 1

review articles

incorruptible) party is willing to help
the parties carry out their computa-
tion. In such a world, the parties can
simply send their inputs to the trusted
party, who then computes the desired
function and passes each party its pre-
scribed output. As the only action car-
ried out by a party is that of sending its
input to the trusted party, the only free-
dom given to the adversary is in choos-
ing the corrupted parties’ inputs.
Notice that all of the described security
properties (and more) hold in this ideal
computation. For example, privacy
holds because the only message ever
received by a party is its output (and so
it cannot learn any more than this).
Likewise, correctness holds because
the trusted party cannot be corrupted
and so will always compute the func-
tion correctly.

Of course, in the “real world,” there
is no external party that can be trusted
by all parties. Rather, the parties run
some protocol among themselves
without any help, and some of them
are corrupted and colluding. Despite
this, a secure protocol should emulate
the so-called “ideal world.” That is, a
real protocol that is run by the parties
(in a world where no trusted party
exists) is said to be secure, if no
adversary can do more harm in a real
execution that in an execution that
takes place in the ideal world. This
can be formulated by saying that for
any adversary carrying out a success-
ful attack in the real world, there exists
an adversary that successfully carries
out an attack with the same effect in
the ideal world. However, successful
adversarial attacks cannot be carried
out in the ideal world. We therefore
conclude that all adversarial attacks
on protocol executions in the real
world must also fail.

More formally, the security of a pro-
tocol is established by comparing the
outcome of a real protocol execution to
the outcome of an ideal computation.
That is, for any adversary attacking a
real protocol execution, there exists an
adversary attacking an ideal execution
(with a trusted party) such that the
input/output distributions of the
adversary and the participating parties
in the real and ideal executions are
essentially the same. Thus a real proto-
col execution “emulates” the ideal
world. This formulation of security is

computation of digital signatures
and decryption, where no single party
holds the private key.

Security of MPC
The definitional paradigm. As we have
mentioned, the setting that we con-
sider is one where an adversarial entity
controls some subset of the parties and
wishes to attack the protocol execu-
tion. The parties under the control of
the adversary are called corrupted, and
follow the adversary’s instructions.
Secure protocols should withstand any
adversarial attack (where the exact
power of the adversary will be discussed
later). In order to formally claim and
prove that a protocol is secure, a precise
definition of security for multiparty
computation is required. A number of
different definitions have been pro-
posed and these definitions aim to
ensure a number of important security
properties that are general enough to
capture most (if not all) multiparty
computation tasks. We now describe
the most central of these properties:

(1)  Privacy: No party should learn
anything more than its prescribed
output. In particular, the only
information that should be
learned about other parties’ inputs
is what can be derived from the
output itself. For example, in an
auction where the only bid
revealed is that of the highest bid-
der, it is clearly possible to derive
that all other bids were lower than
the winning bid. However, noth-
ing else should be revealed about
the losing bids.

(2)  Correctness: Each party is guaran-
teed that the output that it receives
is correct. To continue with the
example of an auction, this implies
that the party with the highest bid
is guaranteed to win, and no party
such as the auctioneer can influ-
ence this.

(3)  Independence of Inputs: Corrupted
parties must choose their inputs
independently of the honest par-
ties’ inputs. This property is cru-
cial in a sealed auction, where
bids are kept secret and parties
must fix their bids independently
of others. We note that indepen-
dence of inputs is not implied by
privacy. For example, it may be

possible to generate a higher bid,
without knowing the value of the
original one. Such an attack can
actually be carried out on some
encryption schemes (that is,
given an encryption of $100, it is
possible to generate a valid
encryption of $101, without know-
ing the original encrypted value).

(4)  Guaranteed output delivery:
Corrupted parties should not be
able to prevent honest parties
from receiving their output. In
other words, the adversary should
not be able to disrupt the compu-
tation by carrying out a “denial of
service” attack.

(5)  Fairness: Corrupted parties should
receive their outputs if and only if
the honest parties also receive their
outputs. The scenario where a cor-
rupted party obtains output and an
honest party does not should not be
allowed to occur. This property can
be crucial, for example, in the case
of contract signing. Specifically, it
would be very problematic if the
corrupted party received the
signed contract and the honest
party did not. Note that guaran-
teed output delivery implies fair-
ness, but the converse is not
necessarily true.

We stress that this list does not constitute
a definition of security, but rather a set
of requirements that should hold for
any secure protocol. Indeed, one pos-
sible approach to defining security is
to just generate a list of separate
requirements (as mentioned) and then
say that a protocol is secure if all of
these requirements are fulfilled.
However, this approach is not satisfac-
tory for the following reasons. First, it
may be possible that an important
requirement was missed. This is espe-
cially true because different applica-
tions have different requirements, and
we would like a definition that is gen-
eral enough to capture all applications.
Second, the definition should be sim-
ple enough so that it is trivial to see that
all possible adversarial attacks are pre-
vented by the proposed definition.

The standard definition today5 there-
fore formalizes security in the follow-
ing general way. As a mental
experiment, consider an “ideal world”
in which an external trusted (and

JANUARY 2021 | VOL. 64 | NO. 1 | COMMUNICATIONS OF THE ACM 89

review articles

called the ideal/real simulation paradigm.
In order to motivate the usefulness of
this definition, we describe why all
the properties described are
implied. Privacy follows from the
fact that the adversary’s output is the
same in the real and ideal execu-
tions. Because the adversary learns
nothing beyond the corrupted par-
ty’s outputs in an ideal execution, the
same must be true for a real execu-
tion. Correctness follows from the
fact that the honest parties’ outputs
are the same in the real and ideal exe-
cutions, and from the fact that in an
ideal execution, the honest parties
all receive correct outputs as com-
puted by the trusted party. Regarding
independence of inputs, notice that
in an ideal execution, all inputs are
sent to the trusted party before any
output is received. Therefore, the
corrupted parties know nothing of the
honest parties’ inputs at the time that
they send their inputs. In other words,
the corrupted parties’ inputs are cho-
sen independently of the honest par-
ties’ inputs, as required. Finally,
guaranteed output delivery and fair-
ness hold in the ideal world because
the trusted party always returns all out-
puts. The fact that it also holds in the
real world again follows from the fact
that the honest parties’ outputs are the
same in the real and ideal executions.

We remark that in some cases, the
definition is relaxed to exclude fairness
and guaranteed output delivery. The
level of security achieved when these
are excluded is called “security with
abort,” and the result is that the adver-
sary may be able to obtain output,
whereas the honest parties do not.
There are two main reasons why this
relaxation is used. First, in some cases,
it is impossible to achieve fairness (for
example, it is impossible to achieve fair
coin tossing for two parties11). Second,
in some cases, more efficient protocols
are known when fairness is not guaran-
teed. Thus, if the application does not
require fairness (and in particular in
cases where only one party receives
output), this relaxation is helpful.

Additional definitional parameter.
Adversarial power. The informal def-
inition of security omits one very
important issue: the power of the
adversary that attacks a protocol exe-
cution. As we have mentioned, the

adversary controls a subset of the par-
ticipating parties in the protocol.
However, we have not defined what
power such an adversary has. We
describe the two main parameters
defining the adversary: its allowed
adversarial behavior (that is, does the
adversary just passively gather infor-
mation or can it instruct the cor-
rupted parties to act maliciously?)
and its corruption strategy (that is,
when or how parties come under the
“control” of the adversary?):

(1)  Allowed adversarial behavior:
The most important parameter
that must be to the actions that
corrupted parties are allowed to
take. There are three main types
of adversaries:

(a)  Semi-honest adversaries: In the
semi-honest adversarial model,
even corrupted parties cor-
rectly follow the protocol
specification. However, the
adversary obtains the internal
state of all the corrupted par-
ties (such as the transcript of
all the messages received) and
attempts to use this to learn
information that should
remain private. This is a rather
weak adversarial model, but
a protocol with this level of
security does guarantee that
there is no inadvertent data
leakage. In some cases, this is
sufficient although in today’s
adversarial environment it is
often insufficient. Semi-honest
adversaries are also called
“honest-but-curious” and “pas-
sive.” (Sometimes, fail-stop
adversaries are also consid-
ered; these are essentially semi-
honest adversaries who may
also halt the protocol execu-
tion early.)

(b)  Malicious adversaries: In this
adversarial model, the cor-
rupted parties can arbitrarily
deviate from the protocol
specification according to the
adversary’s instructions. In gen-
eral, providing security in the
presence of malicious adver-
saries is preferred, as it ensures
that no adversarial attack can
succeed. Malicious adversaries
are also called “active.”

The security
of a protocol
is established
by comparing
the outcome
of a real protocol
execution to
the outcome
of an ideal
computation.

90 COMMUNICATIONS OF THE ACM | JANUARY 2021 | VOL. 64 | NO. 1

review articles

(such as in the adaptive adver-
sarial model), but corrupted
parties may also become hon-
est. The proactive model makes
sense in cases where the threat
is an external adversary who
may breach networks and break
into services and devices,
and secure computations are
ongoing. When breaches are
discovered, the systems are
cleaned and the adversary loses
control of some of the
machines, making the parties
honest again. The security
guarantee is that the adver-
sary can only learn what it
derived from the local state of
the machines that it cor-
rupted, although they were
corrupted. Such an adversary
is sometimes called mobile.

There is no “right” model when con-
sidering this information. Rather, the
specific definition used and adversary
considered depend on the application
and the threats being dealt with.

Modular sequential and concurrent
composition. In reality, a secure multi-
party computation protocol is not
run in isolation; rather, it is part of a
system. Canetti5 proved that if you run
an MPC protocol as part of a larger sys-
tem, then it still behaves in the same
way as if an incorruptible trusted party
carried out the computation for the
parties. This powerful theorem is
called modular composition, and it
enables larger protocols to be con-
structed in a modular way using secure
subprotocols, as well as analysing a
larger system that uses MPC for some
of the computations.

One important question in this con-
text is whether or not the MPC protocol
itself runs at the same time as other
protocols. In the setting of sequential
composition, the MPC protocol can run
as a subprotocol of another protocol
with arbitrary other messages being
sent before and after the MPC proto-
col. However, the MPC protocol itself
must be run without any other messages
being sent in parallel. This is called the
stand-alone setting and is the setting
considered by the basic definition of
security of Canetti.5 The sequential
modular composition theorem of
Canetti5 states that in this setting, the

(c)  Covert adversaries:1 This type
of adversary may behave mali-
ciously in an attempt to break
the protocol. However, the secu-
rity guarantee provided is that
if it does attempt such an
attack, then it will be detected
with some specified probability
that can be tuned to the appli-
cation. We stress that unlike
in the malicious model, if the
adversary is not detected, then
it may successfully cheat (for
example, learn an honest
party’s input). This model is
suited to settings where some
real-world penalty can be asso-
ciated with an adversary being
detected, and the adversary’s
expectation is to lose overall if it
attempts an attack.

(2)  Corruption strategy: The corrup-
tion strategy deals with the ques-
tion of when and how parties are
corrupted. There are three main
models:

(a)  Static corruption model: In this
model, the set of parties con-
trolled by the adversary is fixed
before the protocol begins.
Honest parties remain honest
throughout and corrupted par-
ties remain corrupted.

(b)  Adaptive corruption model: Rather
than having a fixed set of cor-
rupted parties, adaptive adver-
saries are given the capability
of corrupting parties during
the computation. The choice
of who to corrupt, and when,
can be arbitrarily decided by the
adversary and may depend on its
view of the execution (for this
reason it is called adaptive). This
strategy models the threat of
an external “hacker” breaking
into a machine during an exe-
cution, or a party which is hon-
est initially and later changes
its behavior. We note that in
this model, once a party is cor-
rupted, it remains corrupted
from that point on.

(c)  Proactive security model:7,30
This model considers the pos-
sibility that parties are cor-
rupted for a certain period of
time only. Thus, honest par-
ties may become corrupted
throughout the computation

In reality,
a secure multiparty
computation
protocol is not run
in isolation;
rather, it is part
of a system.

JANUARY 2021 | VOL. 64 | NO. 1 | COMMUNICATIONS OF THE ACM 91

review articles

MPC protocol indeed behaves like a
computation carried out by a trusted
third party.

In some (many) cases, MPC proto-
cols are run at the same time as other
instances of itself, other MPC proto-
cols, and other insecure protocols. In
these cases, a protocol proven secure
under the aforementioned stand-
alone definition of security may not
actually remain secure. A number of
definitions were proposed to deal with
this setting, the most popular of these
is that of universal composability.6
Any protocol proven secure according
to this definition is guaranteed to
behave like an ideal execution, irre-
spective of what other protocols run
concurrently to it. As such, this is the
gold standard of MPC definitions.
However, it does come at a price (both
of efficiency and of assumptions
required on the system setup).

Important definitional implica-
tions. The ideal model and using MPC
in practice. The ideal/real paradigm for
defining security actually has some very
important implications for the use of
MPC in practice. Specifically, in order
to use an MPC protocol, all a practitio-
ner needs to do is to consider the secu-
rity of their system when an
incorruptible trusted party carries out
the computation for which MPC is
used. If the system is secure in this case,
then it will remain secure even when
the real MPC protocols are used (under
the appropriate composition case).
This means that noncryptographers
need not understand anything about
how MPC protocols work, or even how
security is defined. The ideal model
provides a clean and easy to understand
abstraction that can be utilized by those
constructing systems.

Any inputs are allowed. Although
the ideal model paradigm provides
a simple abstraction, as described
there is a subtle point that is some-
time misunderstood. An MPC proto-
col behaves like an ideal execution;
as such, the security obtained is anal-
ogous to that of an ideal execution.
However, in an ideal execution,
adversarial parties may input any val-
ues that they wish, and indeed there
is no generic way of preventing this.
Thus, if two people wish to see who
earns a higher salary (without reveal-
ing any more than this one bit of

information), then nothing stops one
of them from inputting the maximum
possible value as their salary (and
then behaving honestly in the MPC
protocol itself), with the result being
that the output is that they earn more.
Thus, if the security of an application
depends on the party’s using correct
inputs, then mechanisms must be
used to enforce this. For example, it
is possible to require signed inputs
and have the signature be verified as
part of the MPC computation.
Depending on the specific protocol,
this can add significant cost.

MPC secures the process, but not
the output. Another subtlety that is
often misunderstood is that MPC
secures the process, meaning that
nothing is revealed by the computa-
tion itself. However, this does not
mean that the output of the function
being computed does not reveal sensi-
tive information. For an extreme
example, consider two people com-
puting the average of their salaries. It
is indeed true that nothing but the
average will be output, but given a per-
son’s own salary and the average of
both salaries, they can derive the exact
salary of the other person. Thus, just
using MPC does not mean that all pri-
vacy concerns are solved. Rather, MPC
secures the computing process, and
the question of what functions should
and should not be computed due to
privacy concerns still needs to be
addressed. In some cases, such as
threshold cryptography, this question
is not an issue (because the output of
cryptographic functions does not
reveal the key, assuming that it is
secure). However, in other cases, it
may be less clear.

Feasibility of MPC
The definition of security seems to be
very restrictive in that no adversarial
success is tolerated, and the protocol
should behave as if a trusted third
party is carrying out the computation.
Thus, one may wonder whether it is
even possible to obtain secure protocols
under this definition, and if yes, for
which distributed computing tasks.
Perhaps surprisingly, powerful feasibil-
ity results have been established, dem-
onstrating that in fact, any distributed
computing task (function) can be
securely computed, in the presence of

malicious adversaries. We now briefly
state the most central of these results.
Let n denotes the number of participat-
ing parties and let t denotes a bound on
the number of parties that may be cor-
rupted (where the identity of the cor-
rupted parties is unknown):

(1)  For t < n/3 (that is, when less than a
third of the parties can be cor-
rupted), secure multiparty proto-
cols with fairness and guaranteed
output delivery can be achieved for
any function with computational
security assuming a synchro-
nous point-to-point network with
authenticated channels,18 and
with information-theoretic secu-
rity assuming the channels are
also private.3, 9

(2)  For t < n/2 (that is, in the case
of a guaranteed honest major-
ity), secure multiparty proto-
cols with fairness and
guaranteed output delivery can
be achieved for any function
with computational and informa-
tion-theoretic security, assuming
that the parties also have access to
a broadcast channel.18, 33

(3)  For t ≥ n/2 (that is, when the number
of corrupted parties is not lim-
ited), secure multiparty protocols
(without fairness or guaranteed
output delivery) can be achieved.18, 37

In the setting of concurrent compo-
sition described earlier, it has also
been shown that any function can be
securely computed.6, 8

In summary, secure multiparty pro-
tocols exist for any distributed comput-
ing task. This fact is what provides its
huge potential—whatever needs to be
computed can be computed securely!
We stress, however, that the aforemen-
tioned feasibility results are theoretical,
meaning that they demonstrate that
this is possible in principle. They do
not consider the practical efficiency
costs incurred; these will be mentioned
here later.

We conclude this section with a
caveat. The feasibility results are
proven in specific models, and under
cryptographic hardness and/or setting
assumptions. It is beyond the scope of
this review to describe these details,
but it is important to be aware that they
need to be considered.

92 COMMUNICATIONS OF THE ACM | JANUARY 2021 | VOL. 64 | NO. 1

review articles

every gate for which the parties
hold (t + 1)-out-of-n sharings of
the values on the two input
wires, the result of the computa-
tion is a (t + 1)-out-of-n secret
sharing of the value on the out-
put wire of the gate.

(a)  Computing addition gates:
According to the invariant, each
party holds a secret sharing of
the values on the input wires
to the gate; we denote these
polynomials by a(x) and b(x)
and this means that the ith
party holds the values a(i) and
b(i). The output wire of this
gate should be a (t + 1)-out-of-
n secret sharing of the value
a(0) + b(0). This is easily com-
puted by the ith party locally
setting its share on the out-
put wire to be a(i) + b(i).
Observe that by defining the
polynomial c(x) = a(x) + b(x),
this means that the ith party
holds c(i). Furthermore, c(x)
is a degree-t polynomial such
that c(0) = a(0) + b(0). Thus, the
parties hold a valid (t + 1)-out-
of-n secret sharing of the value
a(0) + b(0), as required. Observe
that no communication is
needed in order to compute
addition gates.

(b)  Computing multiplication gates:
Once again, denote the poly-
nomials on the input wires
to the gate by a(x) and b(x). As
for an addition gate, the ith
party can locally multiply its
shares to define c(i) = a(i) ×
b(i). By the properties of
polynomial multiplication,
this defines a polynomial
c(x) such that c(0) = a(0) ×
b(0). Thus, c(x) is a sharing of
the correct value (the prod-
uct of the values on the input
wires). However, c(x) is of
degree-2t, and thus, this is
a (2t + 1)-out-of-n secret shar-
ing and not a (t + 1)-out-of-n
secret sharing. In order to
complete the computation of
the multiplication gate, it is
therefore necessary for the
parties to carry out a degree
reduction step, to securely
reduce the degree of the poly-
nomial shared among the

Techniques
Over the past three decades, many dif-
ferent techniques have been developed
for constructing MPC protocols with
different properties, and for different
settings. It is way beyond the scope of
this article to even mention all of the
techniques, and we highly recommend
reading15 for an extremely well-written
and friendly introduction to MPC,
such as a survey of the major tech-
niques. Nevertheless, we will provide a
few simple examples of how MPC pro-
tocols are constructed, in order to illus-
trate how it can work.

Shamir secret sharing. MPC proto-
cols for an honest majority typically
utilize secret sharing as a basic tool. We
will therefore begin by briefly describ-
ing Shamir’s secret sharing scheme.34

A secret sharing scheme solves the
problem of a dealer who wishes to share
a secret s among n parties, so that any
subset of t + 1 or more of the parties can
reconstruct the secret, yet no subset of t
or fewer parties can learn anything
about the secret. A scheme that fulfills
these requirements is called a (t +
1)-out-of-n-threshold secret-sharing
scheme.

Shamir’s secret sharing scheme
utilizes the fact that for any for t + 1
points on the two dimensional plane
(x1, y1), …, (xt + 1, yt + 1) with unique xi,
there exists a unique polynomial
q(x) of degree at most t such that
q(xi) = yi for every i. Furthermore, it
is possible to efficiently reconstruct
the polynomial q(x), or any specific
point on it. One way to do this is
with the Lagrange basis polynomi-
als 1(x), …, t(x), where reconstruc-
tion is carried out by computing

. From here on, we
will assume that all computations
are in the finite field p, for a prime
p > n.

Given this, in order to share a secret
s, the dealer chooses a random polyno-
mial q(x) of degree at most t under the
constraint that q(0) = s. (Concretely,
the dealer sets a0 = s and chooses ran-
dom coefficients a1, …, at ∈ p, and
sets .) Then, for every i
= 1, …, n, the dealer provides the ith
party with the share yi = q(i); this is the
reason why we need p > n, so that differ-
ent shares can be given to each party.
Reconstruction by a subset of any t par-
ties works by simply interpolating the

polynomial to compute q(x) and then
deriving s = q(0). Although t + 1 parties
can completely recover s, it is not hard
to show that any subset of t or fewer par-
ties cannot learn anything about s. This
is due to the fact that they have t or
fewer points on the polynomial, and so
there exists a polynomial going through
these points and the point (0, s) for
every possible s ∈ p. Furthermore,
because the polynomial is random, all
polynomials are equally likely, and so
all values of s ∈ p are equally likely.

Honest-majority MPC with secret
sharing. The first step in most proto-
cols for general MPC (that is, protocols
that can be used to compute any func-
tion) is to represent the function being
computed as a Boolean or arithmetic
circuit. In the case of honest-major-
ity MPC based on secret sharing, the
arithmetic circuit (comprised of
multiplication and addition gates) is
over a finite field p with p > n. We
remark that arithmetic circuits are
Turing complete, and so any function
can be represented in this form. The
parties participating in the MPC pro-
tocol are all provided in this circuit, and
we assume they can all communicate
securely with each other. The protocol
for semi-honest adversaries (see here for
what is needed for the case of malicious
adversaries) consists of the following
phases:

(1)  Input sharing: In this phase, each
party shares its input with the other
parties, using Shamir’s secret
sharing. That is, for each input
wire to the circuit, the party whose
input is associated with that wire
plays the dealer in Shamir’s secret
sharing to share the value to all
parties. The secret sharing used is
(t + 1)-out-of-n, with
(thus, the degree of the polynomial is
t). This provides security against
any minority of corrupted parties,
because no such minority can
learn anything about the shared
values. Following this step, the par-
ties hold secret shares of the values
on each input wire.

(2)  Circuit evaluation: In this
phase, the parties evaluate the
circuit one gate at a time, from
the input gates to the output
gates. The evaluation main-
tains the invariant that for

JANUARY 2021 | VOL. 64 | NO. 1 | COMMUNICATIONS OF THE ACM 93

review articles

parties from 2t to t, without
changing its value at 0.
Before proceeding to
describe this, observe that
as t < n/2, the shares held by
the n parties do fully deter-
mine the polynomial c(x) of
degree 2t + 1.

In order to compute the degree
reduction step, we use an idea from
Damgård and Nielsen12 (we describe the
basic idea here although Damgård and
Nielsen12 have a far more efficient way
of realizing it than what we describe
here). Assume that the parties all hold
two independent secret sharings of an
unknown random value r, the first shar-
ing via a polynomial of degree-2t
denoted R2t(x), and the second sharing
via a polynomial of degree-t denoted
Rt(x). Note that R2t(0) = Rt(0) = r. Then,
each party can locally compute its
share of the degree-2t polynomial
d(x) = c(x) − R2t(x) by setting d(i) = c(i) −
R2t(i). Note that both c(x) and R2t(x) are
of degree-2t. Next, the parties recon-
struct d(0) = a(0) ⋅ b(0) − r by sending all
of their shares to all other parties.
Finally, the ith party for all i = 1, …, n
computes its share on the output wire
to be c′(i) = Rt(i) + d(0).

Observe that c′(x) is of degree t as
Rt(x) is of degree t, and it is defined by
adding a constant d(0) to Rt(x). Next,
c′(0) = a(0) × b(0) as Rt(0) = r and d(0) =
a(0) × b(0) − r; thus r cancels out when
summing the values. Thus, the parties
hold a valid (t + 1)-out-of-n secret shar-
ing of the product of the values on the
input wires, as required. Furthermore,
note that the value d(0) that is revealed
to all parties does not leak any infor-
mation because Rt(x) perfectly masks
all values of c(x), and in particular it
masks the value a(0) × b(0).

It remains to show how the parties
generate two independent secret shar-
ings of an unknown random value r via
polynomials of degree 2t and t. This
can be achieved by the ith party, for
all i = 1, …, n, playing the dealer and
sharing a random value ri via a degree-
2t polynomial and via a degree-
t polynomial . Then, upon
receiving such shares from each of the
parties, the ith party for all i = 1,
…, n defines its shares of R2t(x) and Rt(x) by
computing and

. Because all parties

contribute secret random values r1, …, rn
and we have that , it follows
that no party knows r.

(3)  Output reconstruction: Once
the parties have obtained shares
on the output wires, they can
obtain the outputs by simply
sending their shares to each
other and reconstructing the
outputs via interpolation.
Observe that it is also possible
for different parties to obtain
different outputs, if desired. In
this case, the parties send the
shares for reconstruction only
to the relevant parties who are
supposed to obtain the output
on a given wire.

This protocol is secure for semi-honest
adversaries as long as less than n/2 par-
ties are corrupted. This is because the
only values seen by the parties during
the computation are secret shares
(that reveal nothing about the values
they hide), and opened d(0) values
that reveal nothing about the actual
values on the wires due to the inde-
pendent random sharings used each
time. Note that in order to achieve
security in the presence of malicious
adversaries who may deviate from the
protocol specification, it is necessary to
utilize different methods to prevent
cheating. See Beerliová-Trubíniová and
Hirt4, Chida et al.,10 and Furukawa and
Lindell16 for a few examples of how to
efficiently achieve security in the pres-
ence of malicious adversaries.

Private set intersection. Earlier we
described an approach to general
secure computation that can be used to
securely compute any function. In
many cases, these general approaches
turn out to actually be the most efficient
(especially when considering malicious
adversaries). However, in some cases,
the specific structure of the function
being solved enables us to find faster,
tailored solutions. In this and the next
section, we present two examples of
such functions.

In a private set intersection protocol,
two parties with private sets of values
wish to find the intersection of the sets,
without revealing anything but the ele-
ments in the intersection. In some
cases, some function of the intersection
is desired, such as its size only. There

Over the past
three decades,
many different
techniques have
been developed
for constructing
MPC protocols with
different properties,
and for different
settings.

94 COMMUNICATIONS OF THE ACM | JANUARY 2021 | VOL. 64 | NO. 1

review articles

it knows the association between
yj and Fk(yj).)

The protocol reveals nothing but the
intersection because the first party learns
nothing about y1, …, yn from the oblivi-
ous pseudorandom function evaluations,
and the second party learns nothing
about values of xj that are not in the inter-
section because the pseudorandom func-
tion hides the preimage values. This is
therefore secure in the semi-honest
model. It is more challenging to achieve
security in the malicious model. For
example, a malicious adversary could
use a different key for the first element
and later elements, and then have the
result that the value y1 is in the output if
and only if it was the first element of the
second party’s list.

The most efficient private set inter-
section protocols today use advanced
hashing techniques and can process
millions of items in a few seconds.23, 31, 32

Threshold cryptography. The aim of
threshold cryptography is to enable a
set of parties to carry out cryptographic
operations, without any single party
holding the secret key. This can be
used to ensure multiple signatories on
a transaction, or alternatively to pro-
tect secret keys from being stolen by
spreading key shares out on different
devices (so that the attacker has to
breach all devices in order to learn the
key). We demonstrate a very simple
protocol for two-party RSA, but warn
that for more parties (and other
schemes), it is much more complex.

RSA is a public-key scheme with
public-key (e, N) and private-key (d, N).
The basic RSA function is y = xe mod N,
and its inverse function is x = yd mod
N. RSA is used for encryption and sign-
ing, by padding the message and other
techniques. Here, we relate to the raw
RSA function, and show how the inverse
can be computed securely amongst
two parties, where neither party can
compute the function itself. In order
to achieve this, the system is set up
with the first party holding (d1, N) and
the second party holding (d2, N), where
d1 and d2 are random under the con-
straint that d1 + d2 = d. (More formally,
the order in the exponent is φ(N)—
Euler’s function—and therefore the
values d1, d2 ∈ Zφ(N) are random under
the constraint that d1 + d2 = d mod

has been a lot of work on this problem,
with security for both semi-honest and
malicious adversaries, and with differ-
ent efficiency goals (few rounds, low
communication, low computation,
etc.). In this section, we describe the
idea behind the protocol of Kolesnikov
et al.;23 the actual protocol of Kolesnikov
et al.23 is far more complex, but we pres-
ent the conceptually simple idea under-
lying their construction.

A pseudorandom function F is a
keyed function with the property that
outputs of the function on known
inputs look completely random.
Thus, for any given list of elements x1,
…, xn, the series of values Fk(x1), …,
Fk(xn) looks random. In particular,
given Fk(xi), it is infeasible to deter-
mine the value of xi. In the following
simple protocol, we utilize a tool called
oblivious pseudorandom function evalu-
ation. This is a specific type of MPC
protocol where the first party inputs k
and the second party inputs x, and the
second party receives Fk(x), whereas
the first party learns nothing about x
(note that the second party learns
Fk(x) but nothing beyond that; in par-
ticular, k remains secret). Such a
primitive can be built in many ways,
and we will not describe them here.

Now, consider two parties with
respective sets of private elements;
denote them x1, …, xn and y1, …, yn,
respectively (for simplicity, we assume
that their lists are of the same size,
although this is not needed). Then, the
protocol proceeds as follows:

(1)  The first party chooses a key k for
a pseudorandom function.

(2)  The two parties run n oblivious
pseudorandom function evalua-
tions: in the ith execution, the
first party inputs k and the sec-
ond party inputs yi. As a result,
the second party learns Fk(y1), …,
Fk(yn), whereas the first party
learns nothing about y1, …, yn.

(3)  The first party locally computes
Fk(x1), …, Fk(xn) and sends the list
to the second party. It can com-
pute this because it knows k.

(4)  The second party computes the
intersection between the lists
Fk(y1), …, Fk(yn) and Fk(x1), …, Fk(xn),
and outputs all values yj for which
Fk(yj) is in the intersection. (The
party knows these values because

The aim
of threshold
cryptography
is to enable
a set of parties
to carry out
cryptographic
operations,
without any
single party
holding
the secret key.

JANUARY 2021 | VOL. 64 | NO. 1 | COMMUNICATIONS OF THE ACM 95

review articles

φ(N).) In order to securely compute yd
mod N, the first party computes x1 = yd1
mod N, the second party computes x2 =
yd2 mod N, and these values are
exchanged between them. Then,
each party computes x = x1 ⋅ x2 mod
N, verifies that the output is correct by
checking that xe = y mod N, and if yes
outputs x. Observe that this computa-
tion is correct because

In addition, observe that given the out-
put x and its share d1 of the private expo-
nent, the first party can compute

 mod N (this is correct because
). This

means that the first party does not learn
anything more than the output from the
protocol, as it can generate the mes-
sages that it receives in the protocol by
itself from its own input and the output.

We stress that full-blown threshold
cryptography supports quorum approv-
als involving many parties (for exam-
ple, requiring (t + 1)-out-of-n parties to
sign, and maintaining security for any
subset of t corrupted parties). This
needs additional tools, but can also be
done very efficiently; see Shoup35 and
references within. Recently, there has
been a lot of interest in threshold
ECDSA due to its applications to pro-
tecting cryptocurrencies.14, 17, 26, 27

Dishonest-majority MPC. Previously,
we described a general protocol for MPC
that is secure as long as an adversary can-
not corrupt more than a minority of the
parties. In the case of a dishonest major-
ity, including the important special case
of two parties (with one corrupted),
completely different approaches are
needed. There has been a very large
body of work in this direction, from
the initial protocols of Beaver et al.2,
Goldreich et al.18, and Yao37 that
focused on feasibility, and including
a lot of recent work focused on
achieving concrete efficiency. There
is so much work in this direction that
any attempt to describe it here will do
it a grave injustice. We therefore refer
the reader to Evans et al.15 for a
description of the main approaches,
including the GMW oblivious trans-
fer approach,18, 21 garbled circuits,2,

37 cut-and-choose,28 SPDZ,13 TinyOT,29
MPC in the head,22 and more. (We
stress that for each of these

approaches, there have been many
follow-up works, achieving increas-
ingly better efficiency.)

Efficient and practical MPC. The
first 20 years of MPC research focused
primarily on feasibility: how to define
and prove security for multiple adver-
sarial and network models, under what
cryptographic and setup assumptions
it is possible to achieve MPC, and
more. The following decade saw a large
body of research around making MPC
more and more efficient. The first steps
of this process were purely algorithmic
and focused on reducing the overhead
of the cryptographic primitives.
Following this, other issues were con-
sidered that had significant impact:
the memory and communication, utili-
sation of hardware instructions such
as AES-NI, and more. In addition, as
most general protocols require the cir-
cuit representation of the function
being computed, and circuits are hard
to manually construct, special purpose
MPC compilers from code to circuits
were also constructed. These compil-
ers are tailored to be sensitive to the
special properties of MPC. For exam-
ple, in many protocols XOR gates are
computed almost for free,24 in contrast
to AND/OR gates that cost. These com-
pilers therefore minimize the number
of AND gates, even at the expense of
considerably more XOR gates. In addi-
tion, the computational cost of some
protocols is dominated by the circuit
size, whereas in others, it is dominated
by the circuit depth. Thus, some com-
pilers aim to generate the smallest cir-
cuit possible, whereas others aim to
generate a circuit with the lowest
depth. See Hastings et al.19 for a survey
on general-purpose compilers for MPC
and their usability. The combination of
these advancements led to perfor-
mance improvements of many orders
of magnitude in just a few years, paving
the way for MPC to be fast enough to be
used in practice for a wide variety of
problems. See Evans et al.15 (Chapter 4)
for a description of a few of the most
significant of these advancements.

MPC Use Cases
There are many great theoretical exam-
ples of where MPC can be helpful. It
can be used to compare no-fly lists in a
privacy-preserving manner, to enable
private DNA comparisons for medical

and other purposes, to gather statistics
without revealing anything but the
aggregate results, and much more. Up
until very recently, these theoretical
examples of usage were almost all we
had to say about the potential benefits
of MPC. However, the situation today is
very different. MPC is now being used
in multiple real-world use cases, and
usage is growing fast.

We will conclude this article with
some examples of MPC applications
that have been actually deployed.

Boston wage gap.25 The Boston
Women’s Workforce Council used
MPC in 2017 in order to compute sta-
tistics on the compensation of 166,705
employees across 114 companies,
comprising roughly 16% of the Greater
Boston area workforce. The use of MPC
was crucial because companies would
not provide their raw data due to pri-
vacy concerns. The results showed that
the gender gap in the Boston area is
even larger than previously estimated
by the U.S. Bureau of Labor Statistics.
This is a powerful example demon-
strating that MPC can be used for
social good.

Advertising conversion.20 In order to
compute accurate conversion rates
from advertisements to actual pur-
chases, Google computes the size of the
intersection between the list of people
shown an advertisement to the list of
people actually purchasing the adver-
tised goods. When the goods are not
purchased online and so the purchase
connection to the shown advertise-
ment cannot be tracked, Google and
the company paying for the advertise-
ment have to share their respective lists
in order to compute the intersection
size. In order to compute this without
revealing anything but the size of the
intersection, Google utilizes a protocol
for privacy-preserving set intersection.
The protocol used by Google is
described in Ion et al.20 Although this
protocol is far from the most efficient
known today, it is simple and meets
their computational requirements.

MPC for cryptographic key protec-
tion.38 As described in earlier, thresh-
old cryptography provides the ability
to carry out cryptographic operations
(such as decryption and signing) with-
out the private key being held in any
single place. A number of companies
are using threshold cryptography as an

96 COMMUNICATIONS OF THE ACM | JANUARY 2021 | VOL. 64 | NO. 1

review articles

MPC for malicious adversaries at almost the cost of
semi-honest. In the 26th ACM CCS (2019), 1557–1571.

17.	 Gennaro, R., Goldfeder, S. Fast multiparty threshold
ECDSA with fast trustless setup. In the 25th ACM CCS
2018 (2018), 1179–1194.

18.	 Goldreich, O., Micali, S., Wigderson, A. How to play
any mental game – A completeness theorem for
protocols with honest majority. In the 19th STOC
(1987), O. Goldreich, ed. Volume 2 of Foundations of
Cryptography – Basic Applications (2004), Cambridge
University Press, 218–229.

19.	 Hastings, M., Hemenway, B., Noble, D., Zdancewic,
S. SoK: General purpose compilers for secure multi-
party computation. In IEEE Symposium on Security
and Privacy 2019 (2019), 1220–1237.

20.	 Ion, M., Kreuter, B., Nergiz, E., Patel, S., Saxena, S.,
Seth, K., Shanahan, D., Yung, M. Private intersection-
sum protocol with applications to attributing
aggregate Ad conversions. IACR Cryptology ePrint
Archive, Report 2017 (2017), 738.

21.	 Ishai, Y., Kilian, J., Nissim, K., Petrank, E. Extending
oblivious transfers efficiently. In CRYPTO 2003
(2003), Springer (LNCS 2729), 145–161.

22.	 Ishai, Y., Prabhakaran, M., Sahai, A. Founding
cryptography on oblivious transfer – Efficiently. In
CRYPTO 2008 (2008), Springer (LNCS 5157), 572–591.

23.	 Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.
Efficient batched oblivious PRF with applications to private
set intersection. In the 23rd ACM CCS (2016), 818–829.

24.	 Kolesnikov, V., Schneider, T. Improved garbled circuit:
Free XOR gates and applications. In ICALP 2008
(2008), Springer (LNCS 5126), 486–498.

25.	 Lapets, A., Jansen, F., Albab, K.D., Issa, R., Qin, L., Varia, M.,
Bestavros, A. Accessible privacy-preserving web-based
data analysis for assessing and addressing economic
inequalities. In COMPASS 2018 (2018), 48:1–48:5.

26.	 Lindell, Y. Fast secure two-party ECDSA signing. In
CRYPTO 2017 (2017), Springer (LNCS 10402), 613–644.

27.	 Lindell, Y., Nof, A. Fast secure multiparty ECDSA with
practical distributed key generation and applications
to cryptocurrency custody. In the 25th ACM CCS
(2018), 1837–1854.

28.	 Lindell, Y., Pinkas, B. An efficient protocol for secure
two-party computation in the presence of malicious
adversaries. In EUROCRYPT (2007), Springer, 52–78.

29.	 Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S. A
new approach to practical active-secure two-party
computation. In CRYPTO 2012 (2012), Springer (LNCS
7417), 681–700.

30.	 Ostrovsky, R., Yung, M. How to withstand mobile virus
attacks. In 10th PODC (1991), 51–59.

31.	 Pinkas, B., Rosulek, M., Trieu, N., Yanai, A. SpOT-light:
Lightweight private set intersection from sparse OT
extension. In CRYPTO 2019 (2019), Springer (LNCS
11694), 401–431.

32.	 Pinkas, B., Schneider, T., Zohner, M. Scalable private
set intersection based on OT extension. ACM T. Privacy
Sec. 21, 2:7 (2018), 1–35.

33.	 Rabin, T., Ben-Or, M. Verifiable secret sharing and
multi-party protocols with honest majority. In the 21st
STOC (1989), 73–85.

34.	 Shamir, A. How to share a secret. CACM 22, 11 (1979),
612–613.

35.	 Shoup, V. Practical threshold signatures. In EUROCRYPT
2000 (2000), Springer (LNCS 1807), 207–220.

36.	 Vardi, M. The long game of research. CACM 62, 9 (2019), 7.
37.	 Yao, A. How to generate and exchange secrets.

In 27th FOCS (1986), 162–167.
38.	 Unbound Tech. (www.unboundtech.com), Sepior

(sepior.com), and Curv (www.curv.co).
39.	 Sharemind, https://sharemind.cyber.ee.
40.	Duality, https://duality.cloud.

Yehuda Lindell (lindell@biu.ac.il) is a professor in the
Department of Computer Science at Bar Ilan University,
Ramat Gan, Israel, and is the CEO and co-founder of
Unbound Tech.

© 2021 ACM 0001-0782/21/1 $15.00

alternative to legacy hardware for pro-
tecting cryptographic keys. In this
application, MPC is not run between
different parties holding private infor-
mation. Rather, a single organization
uses MPC to generate keys and com-
pute cryptographic operations, with-
out the key ever being in a single place
where it can be stolen. By placing the
key shares in different environments,
it is very hard for an adversary to steal
all shares and obtain the key. In this
setting, the proactive model described
earlier is the most suitable. Another
use of MPC in this context is for pro-
tecting the signing keys used for pro-
tecting cryptocurrencies and other
digital assets. Here, the ability to
define general quorums enables the
cryptographic enforcement of strict
policies for approving financial trans-
actions, or to share keys between cus-
tody providers and clients.

Government collaboration.39 Different
governmental departments hold infor-
mation about citizens, and significant
benefit can be obtained by correlating
that information. However, the privacy
risks involved in pooling private infor-
mation can prevent governments from
doing this. For example, in 2000,
Canada scrapped a program to pool
citizen information, under criticism
that they were building a “big brother
database.” Utilising MPC, Estonia col-
lected encrypted income tax records
and higher education records to ana-
lyze if students who work during their
degree are more likely to fail than those
focusing solely on their studies. By
using MPC, the government was guar-
anteed that all data protection and tax
secrecy regulations were followed with-
out losing data utility.

Privacy-preserving analytics.40
Machine learning usage is increasing
rapidly in many domains. MPC can be
used to run machine learning models
on data without revealing the model
(which contains precious intellectual
property) to the data owner, and without
revealing the data to the model owner.
In addition, statistical analyses can be
carried out between organizations for
the purpose of anti-money laundering,
risk score calculations, and more.

Discussion
Secure multiparty computation is a
fantastic example of success in the long

game of research.36 For the first 20
years of MPC research, no applications
were in sight, and it was questionable
whether or not MPC would ever be
used. In the past decade, the state of
MPC usability has undergone a radical
transformation. In this time, MPC has
not only become fast enough to be
used in practice, but it has received
industry recognition and has made
the transition to a technology that is
deployed in practice. MPC still
requires great expertise to deploy, and
additional research breakthroughs
are needed to make secure computa-
tion practical on large data sets and
for complex problems, and to make it
easy to use for nonexperts. The prog-
ress from the past few years, and the
large amount of applied research now
being generated, paints a positive
future for MPC in practice. Together
with this, deep theoretical work in
MPC continues, ensuring that applied
MPC solutions stand on strong scien-
tific foundations.�

References
1.	 Aumann, Y., Lindell, Y. Security against covert

adversaries: Efficient protocols for realistic
adversaries. J. Cryptol. 23, 2 (2010), 281–343
(extended abstract at TCC 2007).

2.	 Beaver, D., Micali, S., Rogaway, P. The round complexity
of secure protocols. In 22nd STOC (1990), 503–513.

3.	 Ben-Or, M., Goldwasser, S., Wigderson, A. Completeness
theorems for non-cryptographic fault-tolerant
distributed computation. In 20th STOC (1988), 1–10.

4.	 Beerliová-Trubíniová, Z., Hirt, M. Perfectly-secure MPC
with linear communication complexity. In TCC 2008
(2008), Springer (LNCS 4948), 213–230.

5.	 Canetti, R. Security and composition of multiparty
cryptographic protocols. J. Cryptol. 13, 1 (2000), 143–202.

6.	 Canetti, R. Universally composable security: A new
paradigm for cryptographic protocols. In the 42nd
FOCS (2001), 136–145.

7.	 Canetti, R., Herzberg, A. Maintaining security in the
presences of transient faults. In CRYPTO’94 (1994),
Springer-Verlag (LNCS 839), 425–438.

8.	 Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.
Universally composable two-party and multi-party
computation. In the 34th STOC (2002), 494–503.
http://eprint.iacr.org/2002/140.

9.	 Chaum, D., Crépeau, C., Damgård, I. Multi-party
unconditionally secure protocols. In the 20th STOC
(1988), 11–19.

10.	 Chida, K., Genkin, K., Hamada, K., Ikarashi, D., Kikuchi,
R., Lindell, Y., Nof, A. Fast large-scale honest-majority
MPC for malicious adversaries. In CRYPTO 2018
(2018), Springer (LNCS 10993), 34–64.

11.	 Cleve, R. Limits on the security of coin flips when half
the processors are faulty. In the 18th STOC (1986),
364–369.

12.	 Damgård, I., Nielsen, J. Scalable and unconditionally
secure multiparty computation. In CRYPTO 2007
(2007), Springer (LNCS 4622), 572–590.

13.	 Damgård, I., Pastro, V., Smart, N.P., Zakarias, S.
Multiparty computation from somewhat homomorphic
encryption. In CRYPTO 2012 (2012), Springer (LNCS
7417), 643–662.

14.	 Doerner, J., Kondi, Y., Lee, E., Shelat, A. Threshold
ECDSA from ECDSA assumptions: The multiparty
case. In IEEE Symposium on Security and Privacy
2019 (2019), 1051–1066.

15.	 Evans, D., Kolesnikov, V., Rosulek, M. A Pragmatic
Introduction to Secure Multi-Party Computation. NOW
Publishers, 2018.

16.	 Furukawa, J., Lindell, Y. Two-thirds honest-majority

Watch the author discuss
this work in the exclusive
Communications video.
https://cacm.acm.org/videos/
secure-multiparty-computation

