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DISTRIBUTED COMPUTING  CONSIDERS the scenario where a 
number of distinct, yet connected, computing devices (or 
parties) wish to carry out a joint computation of some 
function. For example, these devices may be servers that 
hold a distributed database system, and the function to 
be computed may be a database update of some kind. 
The aim of secure multiparty computation is to enable 
parties to carry out such distributed computing tasks in a 
secure manner. Whereas distributed computing often 
deals with questions of computing under the threat of 
machine crashes and other inadvertent faults, secure 
multiparty computation is concerned with the 
possibility of deliberately malicious behavior by some 
adversarial entity (these have also been considered in 
the distributed literature where they are called Byzantine 
faults). That is, it is assumed that a protocol execution 
may come under “attack” by an external entity, or even 
by a subset of the participating parties. The aim of 
this attack may be to learn private information or 
cause the result of the computation to be incorrect. Thus, 
two important requirements on any secure computation 

protocols are privacy and correctness. 
The privacy requirement states that 
nothing should be learned beyond what 
is absolutely necessary; more exactly, 
parties should learn their output and 
nothing else. The correctness require-
ment states that each party should re-
ceive its correct output. Therefore, the 
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 key insights
	˽ Secure multiparty computation (MPC) 

is an extremely powerful tool, enabling 
parties to jointly compute on private inputs 
without revealing anything but the result.

	˽ MPC has been studied for over three 
decades in academia and has strong 
theoretical foundations. In the past 
decade, huge progress has been made 
toward making MPC efficient enough for 
use in practice.

	˽ In the past few years, MPC has started  
to be used in commercial products.  
There are performance costs associated 
with MPC protocols, but there are many 
real-life problems that can be solved  
today using existing techniques.
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adversary must not be able to cause the 
result of the computation to deviate 
from the function that the parties had 
set out to compute.

Secure multiparty computation can be 
used to solve a wide variety of problems, 
enabling the utilisation of data without 
compromising privacy. Consider, for 
example, the problem of comparing a 
person’s DNA against a database of 
cancer patients’ DNA, with the goal of 
finding if the person is in a high risk 
group for a certain type of cancer. Such 
a task clearly has important health and 
societal benefits. However, DNA infor-
mation is highly sensitive, and should 
not be revealed to private organiza-
tions. This dilemma can be solved by 
running a secure multiparty computa-
tion that reveals only the category of 
cancer that the person’s DNA is close to 
(or none). In this example, the privacy 
requirement ensures that only the cat-
egory of cancer is revealed, and nothing 

else about anyone’s DNA (neither the 
DNA of the person being compared nor 
the DNA of the patients in the data-
base). Furthermore, the correctness 
requirement guarantees that a malicious 
party cannot change the result (for 
example, make the person think that 
they are at risk of a type of cancer, and 
therefore need screening).

In another example, consider a trading 
platform where parties provide offers 
and bids, and are matched whenever an 
offer is greater than a bid (with, for exam-
ple, the price of the trade being some 
function of the offer and bid prices). In 
such a scenario, it can be beneficial 
from a game theoretic perspective to not 
reveal the parties’ actual offers and bids 
(because this information can be used by 
others in order to artificially raise prices or 
provide bids that are lower than their 
utility). Privacy here guarantees that 
only the match between buyer and 
seller and the resulting price is revealed, 

and correctness would guarantee that 
the price revealed is the correct one 
according to the function (and, for exam-
ple, not some lower value). It is interest-
ing to note that in some cases privacy is 
more important (such as in the DNA 
example), whereas in others correctness 
is more important (such as in the trading 
example). In any case, MPC guarantees 
both of these properties, and more.

A note on terminology. In the lit-
erature, beyond secure multiparty 
computation (with acronym MPC, 
and sometimes SMPC), there are also 
references to secure function evalu-
ation (SFE). These notions overlap 
significantly and are often used syn-
onymously. In addition, special cases 
of MPC often have their own names. 
Two examples are private set intersec-
tion (PSI), which considers the secure 
computation of the intersection of 
private sets, and threshold cryptog-
raphy, which considers the secure 
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incorruptible) party is willing to help 
the parties carry out their computa-
tion. In such a world, the parties can 
simply send their inputs to the trusted 
party, who then computes the desired 
function and passes each party its pre-
scribed output. As the only action car-
ried out by a party is that of sending its 
input to the trusted party, the only free-
dom given to the adversary is in choos-
ing the corrupted parties’ inputs. 
Notice that all of the described security 
properties (and more) hold in this ideal 
computation. For example, privacy 
holds because the only message ever 
received by a party is its output (and so 
it cannot learn any more than this). 
Likewise, correctness holds because 
the trusted party cannot be corrupted 
and so will always compute the func-
tion correctly.

Of course, in the “real world,” there 
is no external party that can be trusted 
by all parties. Rather, the parties run 
some protocol among themselves 
without any help, and some of them 
are corrupted and colluding. Despite 
this, a secure protocol should emulate 
the so-called “ideal world.” That is, a 
real protocol that is run by the parties 
(in a world where no trusted party 
exists) is said to be secure, if no 
adversary can do more harm in a real 
execution that in an execution that 
takes place in the ideal world. This 
can be formulated by saying that for 
any adversary carrying out a success-
ful attack in the real world, there exists 
an adversary that successfully carries 
out an attack with the same effect in 
the ideal world. However, successful 
adversarial attacks cannot be carried 
out in the ideal world. We therefore 
conclude that all adversarial attacks 
on protocol executions in the real 
world must also fail.

More formally, the security of a pro-
tocol is established by comparing the 
outcome of a real protocol execution to 
the outcome of an ideal computation. 
That is, for any adversary attacking a 
real protocol execution, there exists an 
adversary attacking an ideal execution 
(with a trusted party) such that the 
input/output distributions of the 
adversary and the participating parties 
in the real and ideal executions are 
essentially the same. Thus a real proto-
col execution “emulates” the ideal 
world. This formulation of security is 

computation of digital signatures 
and decryption, where no single party 
holds the private key.

Security of MPC
The definitional paradigm. As we have 
mentioned, the setting that we con-
sider is one where an adversarial entity 
controls some subset of the parties and 
wishes to attack the protocol execu-
tion. The parties under the control of 
the adversary are called corrupted, and 
follow the adversary’s instructions. 
Secure protocols should withstand any 
adversarial attack (where the exact 
power of the adversary will be discussed 
later). In order to formally claim and 
prove that  a protocol is secure, a precise 
definition of security for multiparty 
computation is required. A number of 
different definitions have been pro-
posed and these definitions aim to 
ensure a number of important security 
properties that are general enough to 
capture most (if not all) multiparty 
computation tasks. We now describe 
the most central of these properties:

(1)  Privacy: No party should learn 
anything more than its prescribed 
output. In particular, the only 
information that should be 
learned about other parties’ inputs 
is what can be derived from the 
output itself. For example, in an 
auction where the only bid 
revealed is that of the highest bid-
der, it is clearly possible to derive 
that all other bids were lower than 
the winning bid. However, noth-
ing else should be revealed about 
the losing bids.

(2)  Correctness: Each party is guaran-
teed that the output that it receives 
is correct. To continue with the 
example of an auction, this implies 
that the party with the highest bid 
is guaranteed to win, and no party 
such as the auctioneer can influ-
ence this.

(3)  Independence of Inputs: Corrupted 
parties must choose their inputs 
independently of the honest par-
ties’ inputs. This property is cru-
cial in a sealed auction, where 
bids are kept secret and parties 
must fix their bids independently 
of others. We note that indepen-
dence of inputs is not implied by 
privacy. For example, it may be 

possible to generate a higher bid, 
without knowing the value of the 
original one. Such an attack can 
actually be carried out on some 
encryption schemes (that is, 
given an encryption of $100, it is 
possible to generate a valid 
encryption of $101, without know-
ing the original encrypted value).

(4)  Guaranteed output delivery: 
Corrupted parties should not be 
able to prevent honest parties 
from receiving their output. In 
other words, the adversary should 
not be able to disrupt the compu-
tation by carrying out a “denial of 
service” attack.

(5)  Fairness: Corrupted parties should 
receive their outputs if and only if 
the honest parties also receive their 
outputs. The scenario where a cor-
rupted party obtains output and an 
honest party does not should not be 
allowed to occur. This property can 
be crucial, for example, in the case 
of contract signing. Specifically, it 
would be very problematic if the 
corrupted party received the 
signed contract and the honest 
party did not. Note that guaran-
teed output delivery implies fair-
ness, but the converse is not 
necessarily true.

We stress that this list does not constitute 
a definition of security, but rather a set  
of requirements that should hold for 
any secure protocol. Indeed, one pos-
sible approach to defining security is 
to just generate a list of separate 
requirements (as mentioned) and then 
say that a protocol is secure if all of 
these requirements are fulfilled. 
However, this approach is not satisfac-
tory for the following reasons. First, it 
may be possible that an important 
requirement was missed. This is espe-
cially true because different applica-
tions have different requirements, and 
we would like a definition that is gen-
eral enough to capture all applications. 
Second, the definition should be sim-
ple enough so that it is trivial to see that 
all possible adversarial attacks are pre-
vented by the proposed definition.

The standard definition today5 there-
fore formalizes security in the follow-
ing general way. As a mental 
experiment, consider an “ideal world” 
in which an external trusted (and 
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called the ideal/real simulation paradigm. 
In order to motivate the usefulness of 
this definition, we describe why all 
the properties described are 
implied. Privacy follows from the 
fact that the adversary’s output is the 
same in the real and ideal execu-
tions. Because the adversary learns 
nothing beyond the corrupted par-
ty’s outputs in an ideal execution, the 
same must be true for a real execu-
tion. Correctness follows from the 
fact that the honest parties’ outputs 
are the same in the real and ideal exe-
cutions, and from the fact that in an 
ideal execution, the honest parties 
all receive correct outputs as com-
puted by the trusted party. Regarding 
independence of inputs, notice that 
in an ideal execution, all inputs are 
sent to the trusted party before any 
output is received. Therefore, the 
corrupted parties know nothing of the 
honest parties’ inputs at the time that 
they send their inputs. In other words, 
the corrupted parties’ inputs are cho-
sen independently of the honest par-
ties’ inputs, as required. Finally, 
guaranteed output delivery and fair-
ness hold in the ideal world because 
the trusted party always returns all out-
puts. The fact that it also holds in the 
real world again follows from the fact 
that the honest parties’ outputs are the 
same in the real and ideal executions.

We remark that in some cases, the 
definition is relaxed to exclude fairness 
and guaranteed output delivery. The 
level of security achieved when these 
are excluded is called “security with 
abort,” and the result is that the adver-
sary may be able to obtain output, 
whereas the honest parties do not. 
There are two main reasons why this 
relaxation is used. First, in some cases, 
it is impossible to achieve fairness (for 
example, it is impossible to achieve fair 
coin tossing for two parties11). Second, 
in some cases, more efficient protocols 
are known when fairness is not guaran-
teed. Thus, if the application does not 
require fairness (and in particular in 
cases where only one party receives 
output), this relaxation is helpful.

Additional definitional parameter. 
Adversarial power. The informal def-
inition of security omits one very 
important issue: the power of the 
adversary that attacks a protocol exe-
cution. As we have mentioned, the 

adversary controls a subset of the par-
ticipating parties in the protocol. 
However, we have not defined what 
power such an adversary has. We 
describe the two main parameters 
defining the adversary: its allowed 
adversarial behavior (that is, does the 
adversary just passively gather infor-
mation or can it instruct the cor-
rupted parties to act maliciously?) 
and its corruption strategy (that is, 
when or how parties come under the 
“control” of the adversary?):

(1)  Allowed adversarial behavior: 
The most important parameter 
that must be to the actions that 
corrupted parties are allowed to 
take. There are three main types 
of adversaries:

(a)  Semi-honest adversaries: In the 
semi-honest adversarial model,  
even corrupted parties cor-
rectly follow the protocol 
specification. However, the 
adversary obtains the internal 
state of all the corrupted par-
ties (such as the transcript of 
all the messages received) and 
attempts to use this to learn 
information that should 
remain private. This is a rather 
weak adversarial model, but 
a protocol with this level of 
security does guarantee that 
there is no inadvertent data 
leakage. In some cases, this is 
sufficient although in today’s 
adversarial environment it is 
often insufficient. Semi-honest 
adversaries are also called 
“honest-but-curious” and “pas-
sive.” (Sometimes, fail-stop 
adversaries are also consid-
ered; these are essentially semi-
honest adversaries who may 
also halt the protocol execu-
tion early.)

(b)  Malicious adversaries: In this 
adversarial model, the cor-
rupted parties can arbitrarily 
deviate from the protocol 
specification according to the 
adversary’s instructions. In gen-
eral, providing security in the 
presence of malicious adver-
saries is preferred, as it ensures 
that no adversarial attack can 
succeed. Malicious adversaries 
are also called “active.”

The security  
of a protocol  
is established  
by comparing  
the outcome  
of a real protocol 
execution to  
the outcome  
of an ideal 
computation. 
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(such as in the adaptive adver-
sarial model), but corrupted 
parties may also become hon-
est. The proactive model makes 
sense in cases where the threat 
is an external adversary who 
may breach networks and break 
into services and devices, 
and secure computations are 
ongoing. When breaches are 
discovered, the systems are 
cleaned and the adversary loses 
control of some of the 
machines, making the parties 
honest again. The security 
guarantee is that the adver-
sary can only learn what it 
derived from the local state of 
the machines that it cor-
rupted, although they were 
corrupted. Such an adversary 
is sometimes called mobile.

There is no “right” model when con-
sidering this information. Rather, the 
specific definition used and adversary 
considered depend on the application 
and the threats being dealt with.

Modular sequential and concurrent 
composition. In reality, a secure multi-
party computation protocol is not  
run in isolation; rather, it is part of a 
system. Canetti5 proved that if you run 
an MPC protocol as part of a larger sys-
tem, then it still behaves in the same 
way as if an incorruptible trusted party 
carried out the computation for the 
parties. This powerful theorem is 
called modular composition, and it 
enables larger protocols to be con-
structed in a modular way using secure 
subprotocols, as well as analysing a 
larger system that uses MPC for some 
of the computations.

One important question in this con-
text is whether or not the MPC protocol 
itself runs at the same time as other 
protocols. In the setting of sequential 
composition, the MPC protocol can run 
as a subprotocol of another protocol 
with arbitrary other messages being 
sent before and after the MPC proto-
col. However, the MPC protocol itself 
must be run without any other messages 
being sent in parallel. This is called the 
stand-alone setting and is the setting 
considered by the basic definition of 
security of Canetti.5 The sequential 
modular composition theorem of 
Canetti5 states that in this setting, the 

(c)  Covert adversaries:1 This type 
of adversary may behave mali-
ciously in an attempt to break 
the protocol. However, the secu-
rity guarantee provided is that 
if it does attempt such an 
attack, then it will be detected 
with some specified probability 
that can be tuned to the appli-
cation. We stress that unlike 
in the malicious model, if the 
adversary is not detected, then 
it may successfully cheat (for 
example, learn an honest 
party’s input). This model is 
suited to settings where some 
real-world penalty can be asso-
ciated with an adversary being 
detected, and the adversary’s 
expectation is to lose overall if it 
attempts an attack.

(2)  Corruption strategy: The corrup-
tion strategy deals with the ques-
tion of when and how parties are 
corrupted. There are three main 
models:

(a)    Static corruption model: In this 
model, the set of parties con-
trolled by the adversary is fixed 
before the protocol begins. 
Honest parties remain honest 
throughout and corrupted par-
ties remain corrupted.

(b)  Adaptive corruption model: Rather 
than having a fixed set of cor-
rupted parties, adaptive adver-
saries are given the capability 
of corrupting parties during 
the computation. The choice 
of who to corrupt, and when, 
can be arbitrarily decided by the 
adversary and may depend on its 
view of the execution (for this 
reason it is called adaptive). This 
strategy models the threat of 
an external “hacker” breaking 
into a machine during an exe-
cution, or a party which is hon-
est initially and later changes 
its behavior. We note that in 
this model, once a party is cor-
rupted, it remains corrupted 
from that point on.

(c)  Proactive security model:7,30 
This model considers the pos-
sibility that parties are cor-
rupted for a certain period of 
time only. Thus, honest par-
ties may become corrupted 
throughout the computation 

In reality,  
a secure multiparty 
computation 
protocol is not run 
in isolation;  
rather, it is part  
of a system.
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MPC protocol indeed behaves like a 
computation carried out by a trusted 
third party.

In some (many) cases, MPC proto-
cols are run at the same time as other 
instances of itself, other MPC proto-
cols, and other insecure protocols. In 
these cases, a protocol proven secure 
under the aforementioned stand-
alone definition of security may not 
actually remain secure. A number of 
definitions were proposed to deal with 
this setting, the most popular of these 
is that of universal composability.6 
Any protocol proven secure according 
to this definition is guaranteed to 
behave like an ideal execution, irre-
spective of what other protocols run 
concurrently to it. As such, this is the 
gold standard of MPC definitions. 
However, it does come at a price (both 
of efficiency and of assumptions 
required on the system setup).

Important definitional implica-
tions. The ideal model and using MPC 
in practice. The ideal/real paradigm for 
defining security actually has some very 
important implications for the use of 
MPC in practice. Specifically, in order 
to use an MPC protocol, all a practitio-
ner needs to do is to consider the secu-
rity of their system when an 
incorruptible trusted party carries out 
the computation for which MPC is 
used. If the system is secure in this case, 
then it will remain secure even when 
the real MPC protocols are used (under 
the appropriate composition case). 
This means that noncryptographers 
need not understand anything about 
how MPC protocols work, or even how 
security is defined. The ideal model 
provides a clean and easy to understand 
abstraction that can be utilized by those 
constructing systems.

Any inputs are allowed. Although 
the ideal model paradigm provides 
a simple abstraction, as described 
there is a subtle point that is some-
time misunderstood. An MPC proto-
col behaves like an ideal execution; 
as such, the security obtained is anal-
ogous to that of an ideal execution. 
However, in an ideal execution, 
adversarial parties may input any val-
ues that they wish, and indeed there 
is no generic way of preventing this. 
Thus, if two people wish to see who 
earns a higher salary (without reveal-
ing any more than this one bit of 

information), then nothing stops one 
of them from inputting the maximum 
possible value as their salary (and 
then behaving honestly in the MPC 
protocol itself), with the result being 
that the output is that they earn more. 
Thus, if the security of an application 
depends on the party’s using correct 
inputs, then mechanisms must be 
used to enforce this. For example, it 
is possible to require signed inputs 
and have the signature be verified as 
part of the MPC computation. 
Depending on the specific protocol, 
this can add significant cost.

MPC secures the process, but not 
the output. Another subtlety that is 
often misunderstood is that MPC 
secures the process, meaning that 
nothing is revealed by the computa-
tion itself. However, this does not 
mean that the output of the function 
being computed does not reveal sensi-
tive information. For an extreme 
example, consider two people com-
puting the average of their salaries. It 
is indeed true that nothing but the 
average will be output, but given a per-
son’s own salary and the average of 
both salaries, they can derive the exact 
salary of the other person. Thus, just 
using MPC does not mean that all pri-
vacy concerns are solved. Rather, MPC 
secures the computing process, and 
the question of what functions should 
and should not be computed due to 
privacy concerns still needs to be 
addressed. In some cases, such as 
threshold cryptography, this question 
is not an issue (because the output of 
cryptographic functions does not 
reveal the key, assuming that it is 
secure). However, in other cases, it 
may be less clear.

Feasibility of MPC
The definition of security seems to be 
very restrictive in that no adversarial 
success is tolerated, and the protocol 
should behave as if a trusted third 
party is carrying out the computation. 
Thus, one may wonder whether it is 
even possible to obtain secure protocols 
under this definition, and if yes, for 
which distributed computing tasks. 
Perhaps surprisingly, powerful feasibil-
ity results have been established, dem-
onstrating that in fact, any distributed 
computing task (function) can be 
securely computed, in the presence of 

malicious adversaries. We now briefly 
state the most central of these results. 
Let n denotes the number of participat-
ing parties and let t denotes a bound on 
the number of parties that may be cor-
rupted (where the identity of the cor-
rupted parties is unknown):

(1)  For t < n/3 (that is, when less than a 
third of the parties can be cor-
rupted), secure multiparty proto-
cols with fairness and guaranteed 
output delivery can be achieved for 
any function with computational 
security assuming a synchro-
nous point-to-point network with 
authenticated channels,18 and 
with information-theoretic secu-
rity assuming the channels are 
also private.3, 9

(2)  For t < n/2 (that is, in the case 
of a guaranteed honest major-
ity), secure multiparty proto-
cols with fairness and 
guaranteed output delivery can 
be achieved for any function 
with computational and informa-
tion-theoretic security, assuming 
that the parties also have access to 
a broadcast channel.18, 33

(3)  For t ≥ n/2 (that is, when the number 
of corrupted parties is not lim-
ited), secure multiparty protocols 
(without fairness or guaranteed 
output delivery) can be achieved.18, 37

In the setting of concurrent compo-
sition described earlier, it has also 
been shown that any function can be 
securely computed.6, 8

In summary, secure multiparty pro-
tocols exist for any distributed comput-
ing task. This fact is what provides its 
huge potential—whatever needs to be 
computed can be computed securely! 
We stress, however, that the aforemen-
tioned feasibility results are theoretical, 
meaning that they demonstrate that 
this is possible in principle. They do 
not consider the practical efficiency 
costs incurred; these will be mentioned 
here later.

We conclude this section with a 
caveat. The feasibility results are 
proven in specific models, and under 
cryptographic hardness and/or setting 
assumptions. It is beyond the scope of 
this review to describe these details, 
but it is important to be aware that they 
need to be considered.
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every gate for which the parties 
hold (t + 1)-out-of-n sharings of 
the values on the two input 
wires, the result of the computa-
tion is a (t + 1)-out-of-n secret 
sharing of the value on the out-
put wire of the gate.

(a)  Computing addition gates: 
According to the invariant, each 
party holds a secret sharing of 
the values on the input wires 
to the gate; we denote these 
polynomials by a(x) and b(x) 
and this means that the ith 
party holds the values a(i) and 
b(i). The output wire of this 
gate should be a (t + 1)-out-of-
n secret sharing of the value 
a(0) + b(0). This is easily com-
puted by the ith party locally 
setting its share on the out-
put wire to be a(i) + b(i). 
Observe that by defining the 
polynomial c(x) = a(x) + b(x), 
this means that the ith party 
holds c(i). Furthermore, c(x) 
is a degree-t polynomial such 
that c(0) = a(0) + b(0). Thus, the 
parties hold a valid (t + 1)-out-
of-n secret sharing of the value 
a(0) + b(0), as required. Observe 
that no communication is 
needed in order to compute 
addition gates.

(b)  Computing multiplication gates: 
Once again, denote the poly-
nomials on the input wires 
to the gate by a(x) and b(x). As 
for an addition gate, the ith 
party can locally multiply its 
shares to define c(i) = a(i) × 
b(i). By the properties of 
polynomial multiplication, 
this defines a polynomial 
c(x) such that c(0) = a(0) × 
b(0). Thus, c(x) is a sharing of 
the correct value (the prod-
uct of the values on the input 
wires). However, c(x) is of 
degree-2t, and thus, this is 
a (2t + 1)-out-of-n secret shar-
ing and not a (t + 1)-out-of-n 
secret sharing. In order to 
complete the computation of 
the multiplication gate, it is 
therefore necessary for the 
parties to carry out a degree 
reduction step, to securely 
reduce the degree of the poly-
nomial shared among the 

Techniques
Over the past three decades, many dif-
ferent techniques have been developed 
for constructing MPC protocols with 
different properties, and for different 
settings. It is way beyond the scope of 
this article to even mention all of the 
techniques, and we highly recommend 
reading15 for an extremely well-written 
and friendly introduction to MPC, 
such as a survey of the major tech-
niques. Nevertheless, we will provide a 
few simple examples of how MPC pro-
tocols are constructed, in order to illus-
trate how it can work.

Shamir secret sharing. MPC proto-
cols for an honest majority typically 
utilize secret sharing as a basic tool. We 
will therefore begin by briefly describ-
ing Shamir’s secret sharing scheme.34

A secret sharing scheme solves the 
problem of a dealer who wishes to share 
a secret s among n parties, so that any 
subset of t + 1 or more of the parties can 
reconstruct the secret, yet no subset of t 
or fewer parties can learn anything 
about the secret. A scheme that fulfills 
these requirements is called a (t + 
1)-out-of-n-threshold secret-sharing 
scheme.

Shamir’s secret sharing scheme 
utilizes the fact that for any for t + 1 
points on the two dimensional plane 
(x1, y1), …, (xt + 1, yt + 1) with unique xi, 
there exists a unique polynomial 
q(x) of degree at most t such that 
q(xi) = yi for every i. Furthermore, it 
is possible to efficiently reconstruct 
the polynomial q(x), or any specific 
point on it. One way to do this is 
with the Lagrange basis polynomi-
als 1(x), …, t(x), where reconstruc-
tion is carried out by computing 

. From here on, we 
will assume that all computations 
are in the finite field p, for a prime 
p > n.

Given this, in order to share a secret 
s, the dealer chooses a random polyno-
mial q(x) of degree at most t under the 
constraint that q(0) = s. (Concretely, 
the dealer sets a0 = s and chooses ran-
dom coefficients a1, …, at ∈ p, and 
sets .) Then, for every i 
= 1, …, n, the dealer provides the ith 
party with the share yi = q(i); this is the 
reason why we need p > n, so that differ-
ent shares can be given to each party. 
Reconstruction by a subset of any t par-
ties works by simply interpolating the 

polynomial to compute q(x) and then 
deriving s = q(0). Although t + 1 parties 
can completely recover s, it is not hard 
to show that any subset of t or fewer par-
ties cannot learn anything about s. This 
is due to the fact that they have t or 
fewer points on the polynomial, and so 
there exists a polynomial going through 
these points and the point (0, s) for 
every possible s ∈ p. Furthermore, 
because the polynomial is random, all 
polynomials are equally likely, and so 
all values of s ∈ p are equally likely.

Honest-majority MPC with secret 
sharing. The first step in most proto-
cols for general MPC (that is, protocols 
that can be used to compute any func-
tion) is to represent the function being 
computed as a Boolean or arithmetic 
circuit. In the case of honest-major-
ity MPC based on secret sharing, the 
arithmetic circuit (comprised of 
multiplication and addition gates) is 
over a finite field p with p > n. We 
remark that arithmetic circuits are 
Turing complete, and so any function 
can be represented in this form. The 
parties participating in the MPC pro-
tocol are all provided in this circuit, and 
we assume they can all communicate 
securely with each other. The protocol 
for semi-honest adversaries (see here for 
what is needed for the case of malicious 
adversaries) consists of the following 
phases:

(1)  Input sharing: In this phase, each 
party shares its input with the other 
parties, using Shamir’s secret 
sharing. That is, for each input 
wire to the circuit, the party whose 
input is associated with that wire 
plays the dealer in Shamir’s secret 
sharing to share the value to all 
parties. The secret sharing used is 
(t + 1)-out-of-n, with  
(thus, the degree of the polynomial is 
t). This provides security against 
any minority of corrupted parties, 
because no such minority can 
learn anything about the shared 
values. Following this step, the par-
ties hold secret shares of the values 
on each input wire.

(2)  Circuit evaluation: In this 
phase, the parties evaluate the 
circuit one gate at a time, from 
the input gates to the output 
gates. The evaluation main-
tains the invariant that for 
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parties from 2t to t, without 
changing its value at 0. 
Before proceeding to 
describe this, observe that 
as t < n/2, the shares held by 
the n parties do fully deter-
mine the polynomial c(x) of 
degree 2t + 1.

In order to compute the degree 
reduction step, we use an idea from 
Damgård and Nielsen12 (we describe the 
basic idea here although Damgård and 
Nielsen12 have a far more efficient way 
of realizing it than what we describe 
here). Assume that the parties all hold 
two independent secret sharings of an 
unknown random value r, the first shar-
ing via a polynomial of degree-2t 
denoted R2t(x), and the second sharing 
via a polynomial of degree-t denoted 
Rt(x). Note that R2t(0) = Rt(0) = r. Then, 
each party can locally compute its 
share of the degree-2t polynomial 
d(x) = c(x) − R2t(x) by setting d(i) = c(i) − 
R2t(i). Note that both c(x) and R2t(x) are 
of degree-2t. Next, the parties recon-
struct d(0) = a(0) ⋅ b(0) − r by sending all 
of their shares to all other parties. 
Finally, the ith party for all i = 1, …, n 
computes its share on the output wire 
to be c′(i) = Rt(i) + d(0).

Observe that c′(x) is of degree t as 
Rt(x) is of degree t, and it is defined by 
adding a constant d(0) to Rt(x). Next, 
c′(0) = a(0) × b(0) as Rt(0) = r and d(0) = 
a(0) × b(0) − r; thus r cancels out when 
summing the values. Thus, the parties 
hold a valid (t + 1)-out-of-n secret shar-
ing of the product of the values on the 
input wires, as required. Furthermore, 
note that the value d(0) that is revealed 
to all parties does not leak any infor-
mation because Rt(x) perfectly masks 
all values of c(x), and in particular it 
masks the value a(0) × b(0).

It remains to show how the parties 
generate two independent secret shar-
ings of an unknown random value r via 
polynomials of degree 2t and t. This 
can be achieved by the ith party, for 
all i = 1, …, n, playing the dealer and 
sharing a random value ri via a degree-
2t polynomial  and via a degree-
t polynomial . Then, upon 
receiving such shares from each of the 
parties, the ith party for all i = 1,  
…, n defines its shares of R2t(x) and Rt(x) by 
computing  and 

. Because all parties 

contribute secret random values r1, …, rn 
and we have that , it follows 
that no party knows r.

(3)  Output reconstruction: Once 
the parties have obtained shares 
on the output wires, they can 
obtain the outputs by simply 
sending their shares to each 
other and reconstructing the 
outputs via interpolation. 
Observe that it is also possible 
for different parties to obtain 
different outputs, if desired. In 
this case, the parties send the 
shares for reconstruction only 
to the relevant parties who are 
supposed to obtain the output 
on a given wire.

This protocol is secure for semi-honest 
adversaries as long as less than n/2 par-
ties are corrupted. This is because the 
only values seen by the parties during 
the computation are secret shares 
(that reveal nothing about the values 
they hide), and opened d(0) values 
that reveal nothing about the actual 
values on the wires due to the inde-
pendent random sharings used each 
time. Note that in order to achieve 
security in the presence of malicious 
adversaries who may deviate from the 
protocol specification, it is necessary to 
utilize different methods to prevent 
cheating. See Beerliová-Trubíniová and 
Hirt4, Chida et al.,10 and Furukawa and 
Lindell16 for a few examples of how to 
efficiently achieve security in the pres-
ence of malicious adversaries.

Private set intersection. Earlier we 
described an approach to general 
secure computation that can be used to 
securely compute any function. In 
many cases, these general approaches 
turn out to actually be the most efficient 
(especially when considering malicious 
adversaries). However, in some cases, 
the specific structure of the function 
being solved enables us to find faster, 
tailored solutions. In this and the next 
section, we present two examples of 
such functions.

In a private set intersection protocol, 
two parties with private sets of values 
wish to find the intersection of the sets, 
without revealing anything but the ele-
ments in the intersection. In some 
cases, some function of the intersection 
is desired, such as its size only. There 

Over the past 
three decades, 
many different 
techniques have 
been developed 
for constructing 
MPC protocols with 
different properties, 
and for different 
settings. 
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it knows the association between 
yj and Fk(yj).)

The protocol reveals nothing but the 
intersection because the first party learns 
nothing about y1, …, yn from the oblivi-
ous pseudorandom function evaluations, 
and the second party learns nothing 
about values of xj that are not in the inter-
section because the pseudorandom func-
tion hides the preimage values. This is 
therefore secure in the semi-honest 
model. It is more challenging to achieve 
security in the malicious model. For 
example, a malicious adversary could 
use a different key for the first element 
and later elements, and then have the 
result that the value y1 is in the output if 
and only if it was the first element of the 
second party’s list.

The most efficient private set inter-
section protocols today use advanced 
hashing techniques and can process 
millions of items in a few seconds.23, 31, 32

Threshold cryptography. The aim of 
threshold cryptography is to enable a 
set of parties to carry out cryptographic 
operations, without any single party 
holding the secret key. This can be 
used to ensure multiple signatories on 
a transaction, or alternatively to pro-
tect secret keys from being stolen by 
spreading key shares out on different 
devices (so that the attacker has to 
breach all devices in order to learn the 
key). We demonstrate a very simple 
protocol for two-party RSA, but warn 
that for more parties (and other 
schemes), it is much more complex.

RSA is a public-key scheme with 
public-key (e, N) and private-key (d, N). 
The basic RSA function is y = xe mod N, 
and its inverse function is x = yd mod 
N. RSA is used for encryption and sign-
ing, by padding the message and other 
techniques. Here, we relate to the raw 
RSA function, and show how the inverse 
can be computed securely amongst 
two parties, where neither party can 
compute the function itself. In order 
to achieve this, the system is set up 
with the first party holding (d1, N) and 
the second party holding (d2, N), where 
d1 and d2 are random under the con-
straint that d1 + d2 = d. (More formally, 
the order in the exponent is φ(N)—
Euler’s function—and therefore the 
values d1, d2 ∈ Zφ(N) are random under 
the constraint that d1 + d2 = d mod 

has been a lot of work on this problem, 
with security for both semi-honest and 
malicious adversaries, and with differ-
ent efficiency goals (few rounds, low 
communication, low computation, 
etc.). In this section, we describe the 
idea behind the protocol of Kolesnikov 
et al.;23  the actual protocol of Kolesnikov 
et al.23 is far more complex, but we pres-
ent the conceptually simple idea under-
lying their construction.

A pseudorandom function F is a 
keyed function with the property that 
outputs of the function on known 
inputs look completely random. 
Thus, for any given list of elements x1, 
…, xn, the series of values Fk(x1), …, 
Fk(xn) looks random. In particular, 
given Fk(xi), it is infeasible to deter-
mine the value of xi. In the following 
simple protocol, we utilize a tool called 
oblivious pseudorandom function evalu-
ation. This is a specific type of MPC 
protocol where the first party inputs k 
and the second party inputs x, and the 
second party receives Fk(x), whereas 
the first party learns nothing about x 
(note that the second party learns 
Fk(x) but nothing beyond that; in par-
ticular, k remains secret). Such a 
primitive can be built in many ways, 
and we will not describe them here.

Now, consider two parties with 
respective sets of private elements; 
denote them x1, …, xn and y1, …, yn, 
respectively (for simplicity, we assume 
that their lists are of the same size, 
although this is not needed). Then, the 
protocol proceeds as follows:

(1)  The first party chooses a key k for 
a pseudorandom function.

(2)  The two parties run n oblivious 
pseudorandom function evalua-
tions: in the ith execution, the 
first party inputs k and the sec-
ond party inputs yi. As a result, 
the second party learns Fk(y1), …, 
Fk(yn), whereas the first party 
learns nothing about y1, …, yn.

(3)  The first party locally computes 
Fk(x1), …, Fk(xn) and sends the list 
to the second party. It can com-
pute this because it knows k.

(4)  The second party computes the 
intersection between the lists 
Fk(y1), …, Fk(yn) and Fk(x1), …, Fk(xn), 
and outputs all values yj for which 
Fk(yj) is in the intersection. (The 
party knows these values because 

The aim  
of threshold 
cryptography  
is to enable  
a set of parties 
to carry out 
cryptographic 
operations,  
without any  
single party  
holding  
the secret key. 
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φ(N).) In order to securely compute yd 
mod N, the first party computes x1 = yd1 
mod N, the second party computes x2 = 
yd2 mod N, and these values are 
exchanged between them. Then, 
each party computes x = x1 ⋅ x2 mod 
N, verifies that the output is correct by 
checking that xe = y mod N, and if yes 
outputs x. Observe that this computa-
tion is correct because

In addition, observe that given the out-
put x and its share d1 of the private expo-
nent, the first party can compute  

  mod N  (this is correct because 
). This 

means that the first party does not learn 
anything more than the output from the 
protocol, as it can generate the mes-
sages that it receives in the protocol by 
itself from its own input and the output.

We stress that full-blown threshold 
cryptography supports quorum approv-
als involving many parties (for exam-
ple, requiring (t + 1)-out-of-n parties to 
sign, and maintaining security for any 
subset of t corrupted parties). This 
needs additional tools, but can also be 
done very efficiently; see Shoup35 and 
references within. Recently, there has 
been a lot of interest in threshold 
ECDSA due to its applications to pro-
tecting cryptocurrencies.14, 17, 26, 27

Dishonest-majority MPC. Previously, 
we described a general protocol for MPC 
that is secure as long as an adversary can-
not corrupt more than a minority of the 
parties. In the case of a dishonest major-
ity, including the important special case 
of two parties (with one corrupted), 
completely different approaches are 
needed. There has been a very large 
body of work in this direction, from 
the initial protocols of Beaver et al.2, 
Goldreich et al.18, and Yao37 that 
focused on feasibility, and including 
a lot of recent work focused on 
achieving concrete efficiency. There 
is so much work in this direction that 
any attempt to describe it here will do 
it a grave injustice. We therefore refer 
the reader to Evans et al.15 for a 
description of the main approaches, 
including the GMW oblivious trans-
fer approach,18, 21 garbled circuits,2, 

37 cut-and-choose,28 SPDZ,13 TinyOT,29 
MPC in the head,22 and more. (We 
stress that for each of these 

approaches, there have been many 
follow-up works, achieving increas-
ingly better efficiency.)

Efficient and practical MPC. The 
first 20 years of MPC research focused 
primarily on feasibility: how to define 
and prove security for multiple adver-
sarial and network models, under what 
cryptographic and setup assumptions 
it is possible to achieve MPC, and 
more. The following decade saw a large 
body of research around making MPC 
more and more efficient. The first steps 
of this process were purely algorithmic 
and focused on reducing the overhead 
of the cryptographic primitives. 
Following this, other issues were con-
sidered that had significant impact: 
the memory and communication, utili-
sation of hardware instructions such 
as AES-NI, and more. In addition, as 
most general protocols require the cir-
cuit representation of the function 
being computed, and circuits are hard 
to manually construct, special purpose 
MPC compilers from code to circuits 
were also constructed. These compil-
ers are tailored to be sensitive to the 
special properties of MPC. For exam-
ple, in many protocols XOR gates are 
computed almost for free,24 in contrast 
to AND/OR gates that cost. These com-
pilers therefore minimize the number 
of AND gates, even at the expense of 
considerably more XOR gates. In addi-
tion, the computational cost of some 
protocols is dominated by the circuit 
size, whereas in others, it is dominated 
by the circuit depth. Thus, some com-
pilers aim to generate the smallest cir-
cuit possible, whereas others aim to 
generate a circuit with the lowest 
depth. See Hastings et al.19 for a survey 
on general-purpose compilers for MPC 
and their usability. The combination of 
these advancements led to perfor-
mance improvements of many orders 
of magnitude in just a few years, paving 
the way for MPC to be fast enough to be 
used in practice for a wide variety of 
problems. See Evans et al.15 (Chapter 4) 
for a description of a few of the most 
significant of these advancements.

MPC Use Cases
There are many great theoretical exam-
ples of where MPC can be helpful. It 
can be used to compare no-fly lists in a 
privacy-preserving manner, to enable 
private DNA comparisons for medical 

and other purposes, to gather statistics 
without revealing anything but the 
aggregate results, and much more. Up 
until very recently, these theoretical 
examples of usage were almost all we 
had to say about the potential benefits 
of MPC. However, the situation today is 
very different. MPC is now being used 
in multiple real-world use cases, and 
usage is growing fast.

We will conclude this article with 
some examples of MPC applications 
that have been actually deployed.

Boston wage gap.25 The Boston 
Women’s Workforce Council used 
MPC in 2017 in order to compute sta-
tistics on the compensation of 166,705 
employees across 114 companies, 
comprising roughly 16% of the Greater 
Boston area workforce. The use of MPC 
was crucial because companies would 
not provide their raw data due to pri-
vacy concerns. The results showed that 
the gender gap in the Boston area is 
even larger than previously estimated 
by the U.S. Bureau of Labor Statistics. 
This is a powerful example demon-
strating that MPC can be used for 
social good.

Advertising conversion.20 In order to 
compute accurate conversion rates 
from advertisements to actual pur-
chases, Google computes the size of the 
intersection between the list of people 
shown an advertisement to the list of 
people actually purchasing the adver-
tised goods. When the goods are not 
purchased online and so the purchase 
connection to the shown advertise-
ment cannot be tracked, Google and 
the company paying for the advertise-
ment have to share their respective lists 
in order to compute the intersection 
size. In order to compute this without 
revealing anything but the size of the 
intersection, Google utilizes a protocol 
for privacy-preserving set intersection. 
The protocol used by Google is 
described in Ion et al.20 Although this 
protocol is far from the most efficient 
known today, it is simple and meets 
their computational requirements.

MPC for cryptographic key protec-
tion.38 As described in earlier, thresh-
old cryptography provides the ability 
to carry out cryptographic operations 
(such as decryption and signing) with-
out the private key being held in any 
single place. A number of companies 
are using threshold cryptography as an 
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alternative to legacy hardware for pro-
tecting cryptographic keys. In this 
application, MPC is not run between 
different parties holding private infor-
mation. Rather, a single organization 
uses MPC to generate keys and com-
pute cryptographic operations, with-
out the key ever being in a single place 
where it can be stolen. By placing the 
key shares in different environments, 
it is very hard for an adversary to steal 
all shares and obtain the key. In this 
setting, the proactive model described 
earlier is the most suitable. Another 
use of MPC in this context is for pro-
tecting the signing keys used for pro-
tecting cryptocurrencies and other 
digital assets. Here, the ability to 
define general quorums enables the 
cryptographic enforcement of strict 
policies for approving financial trans-
actions, or to share keys between cus-
tody providers and clients.

Government collaboration.39 Different 
governmental departments hold infor-
mation about citizens, and significant 
benefit can be obtained by correlating 
that information. However, the privacy 
risks involved in pooling private infor-
mation can prevent governments from 
doing this. For example, in 2000, 
Canada scrapped a program to pool 
citizen information, under criticism 
that they were building a “big brother 
database.” Utilising MPC, Estonia col-
lected encrypted income tax records 
and higher education records to ana-
lyze if students who work during their 
degree are more likely to fail than those 
focusing solely on their studies. By 
using MPC, the government was guar-
anteed that all data protection and tax 
secrecy regulations were followed with-
out losing data utility.

Privacy-preserving analytics.40 
Machine learning usage is increasing 
rapidly in many domains. MPC can be 
used to run machine learning models 
on data without revealing the model 
(which contains precious intellectual 
property) to the data owner, and without 
revealing the data to the model owner. 
In addition, statistical analyses can be 
carried out between organizations for 
the purpose of anti-money laundering, 
risk score calculations, and more.

Discussion
Secure multiparty computation is a 
fantastic example of success in the long 

game of research.36 For the first 20 
years of MPC research, no applications 
were in sight, and it was questionable 
whether or not MPC would ever be 
used. In the past decade, the state of 
MPC usability has undergone a radical 
transformation. In this time, MPC has 
not only become fast enough to be 
used in practice, but it has received 
industry recognition and has made 
the transition to a technology that is 
deployed in practice. MPC still 
requires great expertise to deploy, and 
additional research breakthroughs 
are needed to make secure computa-
tion practical on large data sets and 
for complex problems, and to make it 
easy to use for nonexperts. The prog-
ress from the past few years, and the 
large amount of applied research now 
being generated, paints a positive 
future for MPC in practice. Together 
with this, deep theoretical work in 
MPC continues, ensuring that applied 
MPC solutions stand on strong scien-
tific foundations.�
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